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Background

• Anomalous driving patterns increase 
accidents’ risk [1].

• Driving patterns vary depending on 
temporal & spatial context and the 
driver’s habit.

• How to detect such patterns and 
avoid any potential accidents?
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[1] Tian et al, Speed-accident relationship at urban signalized intersections, 2013.



Background -> solutions

1. Centralized ML:

Offload detection to cloud.

- Lack context-awareness

- Contextual information and number of vehicles results in a significant 
network and computational load.

2. On-board solutions:

Use OBU to detect based on other sensors, e.g., D 3 [2], Trip 
recommendation [3].

- Lack holistic view.
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[2] Chen et al, D3:Abnormal driving behaviors detection and identification using smartphone sensors, 2015. 

[3] Verma et al, Avoiding Stress Driving: Trip Recommendation from Driving Prediction, 2019
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CAD3: An integrated & distributed architecture 
to recognize normal behaviors and detect any 
deviations in real-time

•Detect unsafe driving behaviors and notify the 
nearby drivers in real-time.

•Driver awareness → Less Accidents

Research Purpose



CAD3 Architecture

▪ Onboard Sensors, OBUs, and 
communication units.

▪ DSRC communication

▪ Edge Computing:
➢ RSU along the roads

▪ Inter-RSU communication
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CAD3
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❑ Pervasive deployment of Edge 
Computing Nodes (RSUs)

❑ Realtime Streaming & Processing 
Framework.

❑ Inter-edge collaboration.
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• Inter-edge 
collaboration.

• Simple ML Model: 
Detect anomalous 
behaviors. 
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(C )AD3 -Testbed
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• Use tc and netem to mimic vehicles 
and DSRC

• DSRC is shared channel between 
vehicles of up to 27Mb/s

• Vehicles are Kafka Producers 
(Threads) read from Dataset and 
send to PC2



Evaluation

Latency & vehicle increase
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Accuracy & F1-score



Evaluation

True positive, false negative rate for 
500K measurements

Potential Accidents
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Model TP Rate FN Rate E(ꓮ)

Centralized 49.2% 19.9% 9,004

AD3 52.3% 11.8% 1,475

CAD3 57.9% 6.2% 371

[6] Nilsson, Traffic safety dimensions and the power model to describe the effect of speed on safety, 2004

Based on Nilsson formula[6], we derive:



Conclusion

Centralized → Capture Collective anomalies.

AD3 → Capture context anomalies, improves F1- score by 3.52%, drops 

FN by 2/3, and #potential accidents 8 X.

CAD3→ Capture context & collective anomalies, improves F1- score by 

6.44%, drops FN by 1/3, and #potential accidents 24 X.
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